Interactions of WRKY15 and WRKY33 transcription factors and their roles in the resistance of oilseed rape to Sclerotinia infection
نویسندگان
چکیده
WRKY transcription factors are known to participate in the defence responses of higher plants. However, little is known about the roles of such proteins, especially regarding their functions in the resistance of oilseed rape (Brassica napus) to Sclerotinia sclerotiorum, a necrotrophic fungal pathogen that causes stem rot. In this study, we identified BnWRKY33 as a S. sclerotiorum-responsive gene that positively regulates resistance to this pathogen by enhancing the expression of genes involved in camalexin synthesis and genes regulated by salicylic acid (SA) and jasmonic acid (JA). We also identified a S. sclerotiorum-responsive region in the promoter of BnWRKY33, which we revealed to be a relatively conserved W-box region in the promoters of homologous genes in different species. Using this S. sclerotiorum-responsive region as bait in a yeast one-hybrid assay, we identified another WRKY transcription factor, BnWRKY15, and observed that both BnWRKY15 and BnWRKY33 could bind to this region. In addition, BnWRKY15 overexpression simultaneously increased the susceptibility of B. napus to S. sclerotiorum and down-regulated BnWRKY33 after different durations of infection. Furthermore, BnWRKY15, which contains a transcriptional repression domain, exhibited reduced transactivation ability and could reduce the transactivation ability of BnWRKY33 in Arabidopsis protoplast assays. Therefore, we suggest that the increased susceptibility of BnWRKY15-overexpressing plants results from reduced BnWRKY33 expression, which is due to the inhibition of BnWRKY33 transcriptional activation by BnWRKY15.
منابع مشابه
Brassica napus Genome Possesses Extraordinary High Number of CAMTA Genes and CAMTA3 Contributes to PAMP Triggered Immunity and Resistance to Sclerotinia sclerotiorum
Calmodulin-binding transcription activators (CAMTAs) play important roles in various plant biological processes including disease resistance and abiotic stress tolerance. Oilseed rape (Brassica napus L.) is one of the most important oil-producing crops worldwide. To date, compositon of CAMTAs in genomes of Brassica species and role of CAMTAs in resistance to the devastating necrotrophic fungal ...
متن کاملDetecting the Hormonal Pathways in Oilseed Rape behind Induced Systemic Resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum
Plants have the ability to resist pathogen attack after infection or treatment with biotic and abiotic elicitors. In oilseed rape plant Brassica napus AACC and in the artificially synthesized Raphanus alboglabra RRCC, the root-colonizing Trichoderma harzianum TH12 fungus triggers induced systemic resistance (ISR), and its culture filtrate (CF) triggers a systemic acquired resistance (SAR) respo...
متن کاملTransformation And Light Inducible Expression of cry1Ab Gene in Oilseed Rape (Brassica napus L.)
Rapeseed (Brassica napus L.) is the third most important oil crop in global productions. One of the major limiting factors for oilseed rape production is lepidopteran pests of the Brassicaceae family. Transgenic plants expressing Bacillus thuringiensis (Bt) genes are powerful tools in the integrated pest management of crop plants. In the present study, we used a synthetic Bt insecticidal crysta...
متن کاملFitness is Recovered with the Decline of Dimethachlon Resistance in Laboratory-induced Mutants of Sclerotinia sclerotiorum after Long-term Cold Storage
After four years of cold storage, dimethachlon resistance of two laboratory-induced resistant Sclerotinia sclerotiorum isolates SCG7 and LA50 declined by 99.5% and 98.9%, respectively, and cross resistance to iprodione and procymidone also declined dramatically. Along with the decline of fungicide resistance, osmotic sensitivity to sodium chloride and glucose decreased tremendously; mycelial gr...
متن کاملارزیابی ژنوتیپهای کلزا از نظر محتوای کلروفیل و کاروتنوئیدها، و آنزیمهای آنتیاکسیدانی در شرایط تنش خشکی
As other crops, oilseed rape (Brassica napus L.) is severely affected under drought conditions. The mechanisms which reduce damages caused by oxidative stress have important roles in resistance of plants to drought stress and antioxidant enzymes have primed importance in this regards. In this factorial experiment 9 oilseed rape genotypes were compared under 3 stress levels (FC, 75%FC, 50%FC) in...
متن کامل